

Mn

An International Study of the Marine Biogeochemical Cycles of Trace Elements and their Isotopes

Biogeochemical cycling of trace metals in the sea

Maite Maldonado

Earth, Ocean & Atmospheric Sciences Univ. of British Columbia Vancouver, Canada

Talk Outline

- 1. Modeling biota-trace metals interactions
- 2. An ecosystem model of biological Fe cycling
- 3. Highlighting recent findings, changing paradigms in the biogeochemical cycling of trace metals

Interactions between M and biota

Biological mechanisms mediating M transfer among pools

Biological mechanisms mediating M transfer among pools

Taxonomic patterns of phytoplankton metal stoichiometry

Taxonomic variations: ~20 fold

<u>Geographic provenance</u> (coastal vs. oceanic): ~4 fold

Environmental conditions (light, nuts, [M]): up to 20 fold

Ferritin (Marchetti et al. 2009); Day/ night Fe homeostasis (Botebol et al. 2015)

Models: functional groups V good (specially if quotas can be tweaked for in situ conditions)

Ho et al. 2003

Sunda et al 1991, Finkel et al. 2006, Twining et al. 2013

What to use to normalize trace metal quotas, using P or C?

- Interactions between M & C cycle: normalize to cellular C
- Geochemists prefer normalizing to P, issues:
 - P content is plastic (Sterner & Elser 2002) & affected by Fe nutrition (Price 2005)
 - P adsorbs to cell surface Fe-oxides (Sanudo-Wilhelmy et al. 2004; Fu et al. 2005)

Trend: different Cu:P quotas for green vs. red algae disappears if normalized to C Data from Ho et al. 2003

Species	C:P (mol:mol)	Cu:P (mmol:mol)	Cu:C (µmol:mol)	Mean Cu:P (mmol:mol)	Mean Cu:C (µmol:mol)	
Chlorophyceae	198 ± 35	0.45 ± 0.31	2.17 ± 1.19			
Prasinophyceae	200 ± 9	0.55 ± 0.06	2.77 ± 0.2	0.5	2.47	
Dinophyceae	117 ± 31	0.29 ± 0.24	2.26 ± 1.62			
Prymnesiophyceae	70 ± 8	0.09 ± 0.03	1.32 ± 0.56			
Bacillariophyceae	62 ± 22	0.17 ± 0.09	2.8 ± 1.4	0.18	2.13	

Biological mechanisms mediating M transfer among pools

Half-saturation constant for growth (K_{μ}) vs. short-term Fe uptake (K_{ρ}) differ by orders of magnitude

More K_{ρ} needed, but challenging Alternatives?

Alternative approaches to estimate short-term uptake rates (eg. when Fe concentrations are sub-saturating)

k_{in} = Fe uptake rate constant

Organically bound trace metals are bioavailable (Fe, Cu, Zn...)

Semeniuk et al. 2009, Guo et al. 2015, Semeniuk et al. 2015, Walsh et al. 2015

Organically bound trace metals are bioavailable (Fe, Cu, Zn...)

Biological mechanisms mediating M transfer among pools

Talk Outline

- **1. Modeling biota-trace metal interactions**
- 2. An ecosystem model of biological Fe cycling
- 3. Important recent findings, changing paradigms in biogeochemical cycling of trace elements

Fecal material enriched in many M, including Fe

How important are these fecal Fe sources for phytoplankton growth?

Biological Fe cycling in a realistic food webs (eg. Southern Ocean)

- organisms feeding in multiple trophic levels

A Possible Approach Biological Fe cycling (Christensen & Walters 2004) Mass balance ecosystem models (Ecopath) e.g. Southern Ocean

To each groups we assigned Fe content & calculate Biogenic Fe pools, Fe associated with production, Fe consumption & Fe recycled

Biomass & Biogenic Fe pools in Southern Ocean ecosystem model

Biggest Fe pools

Small pelagic fish Cephalopods Salps Small demersal fish

Annual Fe demand, consumption & released by functional groups in the Southern Ocean (kg Fe.km⁻².y⁻¹)

Greatest Fe demand by

phytoplankton, bacteria, & microzooplankton

Greatest Fe consumers from prey

microzooplankton, carnivorous zooplankton, bacteria, krill & salps

The key recyclers

microzooplankton & carnivorous zooplankton (70% total)

Total Fe recycling 29 kg Fe.km⁻² y⁻² ~ =

phytoplankton & bacteria Fe demand = 22 kg Fe.km⁻² y⁻²

A call for estimates of essential M content in more organisms

Talk Outline

- 1. Modeling biota-trace metal interactions
- 2. An ecosystem model of biological Fe cycling
- 3. Highlighting recent findings, changing paradigms in the biogeochemical cycling of trace metals

Transcriptomics reveals M homeostasis & uptake mechanisms

e.g. Uncovering strategies of 50 diatom species to meet their Fe demands

Goussman et al. 2015

			Uptake		Storage	Redox			SOD						
Source	Genus species strain	Class	FRE	FET	FTR	FTN	petF	FLDA-I	FLDA-II	CYTC6	PCYN	CuZn	Fe	Mn	Ni
-MMETSP0316-18	Amphora coffeaeformis CCMP127		1	1	2	2	1	1	1	1	0	1	0	2	2
MMETSP1065	Amphiprora paludosa CCMP125		2	1	1	2	0	0	1	1	0	1	0	1	2
MMETSP0724-27	Amphiprora sp. CCMP467		2	1	1	1	1	1	0	1	0	1	0	2	2
JGI	^d Phaeodactylum tricornutum		2	0	0	1	0	1	1	1	0	1	0	2	1
-MMETSP0017	Cylindrotheca closterium KMMCC:B-181	æ	2	1	0	1	0	1	0	1	0	1	0	1	1
MMETSP0014	Nitszchia sp RCC80	JOB'C	0	1	1	2	0	0	0	1	0	1	0	2	2
MMETSP0744-47	Nitzschia punctata CCMP561	. T	1	0	2	1	0	1	1	1	0	2	0	2	2
JGI	^d Fragilariopsis cylindrus	Manu	1	3	1	1	0	1	1	1	1	1	0	2	1
MMETSP0733-36	ို Fragilariopsis kerguelensis L26-C5 တွန်	3*	4	2	0	1	0	1	2	1	3	1	0	2	1
MMETSP1352	Stauroneis constricta CCMP1120		1	0	0	0	1	1	1	2	0	1	0	2	0
-MMETSP0139-42	Pseudo-nitzschia australis 10249 10 AB		1	0	0	1	0	1	1	1	0	0	0	1	1
MMETSP1060	Pseudo-nitzschia pungens cf. cingulata		0	0	1	1	0	0	0	0	0	0	0	2	1
MMETSP1061	Pseudo-nitzschia pungens cf. pungens		0	1	0	2	0	0	0	1	0	0	0	1	1
JGI	^d Pseudo-nitzschia multiseries		1	0	1	2	0	1	1	1	0	1	0	2	1
internal	Pseudo-nitzschia granii		0	0	0	1	0	0	1	1	1	1	0	2	1
MMETSP0329	Pseudo-nitzschia arenysensis B593		1	1	1	1	0	0	0	1	1	1	0	2	1
MMETSP0327	Pseudo-nitzschia delicatissima B596		0	1	1	1	0	0	0	1	0	1	0	1	0
-MMETSP1423	Pseudo-nitzschia heimii		1	1	1	1	0	1	1	1	3	0	0	2	1
-MMETSP1394	Asterionellopsis glacialis		1	2	1	1	0	1	0	1	0	0	1	2	1
-MMETSP1360	Licmophora sp	~	1	0	0	1	0	0	1	1	0	1	0	2	1
MMETSP0786	Thalassionema frauenfeldii CCMP 1798	10 ⁰⁰	1	2	0	2	2	1	1	0	0	1	1	2	2
MMETSP1176	Synedropsis recta cf CCMP1620	Sec. 1	1	1	1	1	0	1	2	1	0	1	0	2	0
MMETSP0009	Grammatophora oceanica	Jarn	1	1	1	0	1	0	0	1	0	1	0	1	1
MMETSP1361	Nanofrustulum sp	9 [.]	3	2	2	4	0	0	0	1	0	2	0	2	2

In theory, a brave modeler/biologist may calculate M demand based on principles of biochemistry (as John Raven)

Genomics reveals diversity in trace metal acquisition mechanisms eg.*Alphaproteobacteria* (SAR11) vs. *Roseobacter* lineages

Interactions between M and biota

Dust Iron Utilization by Natural TrichodesmiumAssisted by BacteriaShaked et al

Dust Iron Utilization by Natural TrichodesmiumAssisted by BacteriaShaked et al

Phytoplankton & associated bacteria are teaming-up to acquire M

signaling molecules & exchange of nutrients

Amin et al. 2009, 2012, 2016

mutualistic interaction

Mixotrophs (organisms that can switch nutritional modes) are widespread in the ocean: affect M cycling

e.g. Phytoplankton that can also ingest prey

Prymnesium parvum

Review by Stoecker et al. 2016

Mixotrophs (organisms that can switch nutritional modes) are widespread in the ocean: affect M cycling

Prymnesium parvum responds to preyPhytoplankton acquiring(bacteria vs. ciliates) & changes metal acquisitiontheir Fe ration fromLiu et al. 2015 (Maranger et al. 1998)prey

Fe uptake from soluble pools

Prymnesium parvum

Interactions between M and biota

Interaction between M and nutrient cycles Cu concentrations in the ocean may limit processes in the N cycle

SUMMARY and Future Directions

- Incredible diversity of mechanisms to acquire metals, and deal with changes in trace metal availability.
- Organisms are accessing multiple M pools & are mediating the transfer of metals between pools
- To better understand biogeochemical cycles of M we need to study the interactions between microorganisms, and M nutrition in higher trophic levels
- Concentrations of other M, besides Fe, may not affect PP, but they may control community composition & cycles of macronutrients