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Particles are key to the biogeochemical cycling of most
elements in the ocean
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Figure 12. A schematic diagram illustrating the major influences on the distribution of Tl
ocean interfaces (blue) and four major internal processes (red) are responsible for ocean T)
GEOTRACES, interface processes form the basis of Theme 1, while internal cycling proce

e Particles can be sources of TEls
* Particles can be sinks of TEls (biological uptake and abiotic scavenging)
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What are particles made of?

Biogenic particles (eg. particulate organic
matter, CaCO,, biogenic Si)

Lithogenic particles (eg. aluminosilicates)
Authigenic particles (eg. Fe and Mn
oxyhydroxides)

Trace elements and isotopes (eg. thorium)




Scavenging of trace elements and
isotopes (TEls): a 2-step process
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There are 2 distinct steps for the removal of a TEl by scavenging

1) Adsorption of the dissolved phase onto suspended particles

2) The aggregation of small, suspended particles into large, sinking particles, which
can be removed from the water column by sinking



How does scavenging vary in the ocean?

e Step 1: Adsorption should be controlled by the small,
suspended particles, which dominate total

particulate mass (>80%) and have high surface area

e Step 2: Removal should be controlled by processes

that lead to aggregation and sinking of large, sinking
particles

— Particle concentration and composition have been
implicated in particle flux (e.g. ballast)
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Step 1: Adsorption

Honeyman and
Santschi 1989 JMR

e Adsorption is a function of number and type
of particle surface sites

— Number of of sites:
* particle concentration: more particles=>more surface
sites

* Particle composition: e.g., oxyhydroxides have more
surface area and thus sites than lithogenic particles

— Type of sites:

 particle surfaces contain functional groups that behave
as ligands, so some particle types form stronger
complexes than others



Measuring major particle composition and
suspended particulate mass (SPM)

SPM = 2 ( litho, oxy)

* Major particle phases are:
— Particulate organic matter (POM)
— Calcium carbonate (CaCO,)
— Biogenic silica (bSi or opal)

— Lithogenic mass (litho)
* derived from Aluminum using upper continental crust (UCC) average Al

— Fe, Mn oxyhydroxides (oxy)
* Lithogenic Fe, Mn removed from total pFe, pMn using UCC Fe:Ti and Mn:Ti or Fe:Al and Mn:Al
e This is measured for large size fraction=LSF (>51um) and small size
fraction=SSF particles (0.8-51um)



Suspended particulate mass (SPM) of small particles
GP16-EPZT VS GAO3-NAZT
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e Slightly higher surface SPM in EPZT than NAZT
* Intense nepheloid layers in NAZT western boundary are absent in EPZT



Particle composition (1a): POM, CaCO3

GP16-EPZT
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Particle composition (1b): opal, lithogenics
GP16-EPZT VS GAO3-NAZT

FAmEs moans A= r

Colorbars from 0-0.5 (0-50%) for Opal and Lithogenics

More opal in EPZT (up to 30% in upwelling region) than NAZT

Far more lithogenic particles in NAZT (Saharan dust in east; margin transport in west) than
EPZT (subsurface transport)
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Particle composition (1): POM, CaCO3, opal, litho
GP16-EPZT VS GAO3-NAZT
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Particle composition (2a): Fe oxyhydroxides
GP16-EPZT VS GAO3-NAZT
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* Fe(OH); prominent (~50% of particle mass) at hydrothermal vent in both basins

* Fe(OH); significant for many more samples in EPZT cruise: far-field hydrothermal plume in
western half, but also slightly elevation in eastern half
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Particle composition (2b): Mn oxyhydroxides
GP16-EPZT VS GAO3-NAZT

* MnO, scalebar from 0-0.05 (0-5%)

* NAZT had no MnO, at hydrothermal vent, whereas EPZT does

* MnO, significantly more prominent in EPZT than NAZT cruise, especially in western half, but
also near bottom on eastern half
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Particle composition (2): oxyhydroxides
GP16-EPZT VS GAO3-NAZT
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* Fe and Mn oxyhydroxides are more prominent in the Pacific (EPZT) than Atlantic (NAZT)
despite overall lower oxygen
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Assessing the extent of scavenging (1)

* A common way to assess the extent of scavenging is
using an empirically calculated partition coefficient,

Kd: K = pTEIadsorb N 1 {TEI/gSPM}
* drer  sem

* Since Kd is normalized by the particle
concentration (SPM), if the number of particle
surface sites is perfectly described by [SPM], then
log(Kd) vs log(SPM) should be a horizontal line

e Actual data often show two types of deviations

. from this line:

* A particle concentration effect

» Significant scatter about the line

Log(Kd)
)
/
J
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Particle concentration effect

Particle composition



K, for 229Th and #*'Pa vs SPM in GA03 NAZT

C.T. Hayes et al. /| Marine Chemistry 170 (2015) 49-60
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Hayes et al. 2015
observed a particle
concentration effect for
230Th and 231Pa in GAO3
NAZT cruise

Also observed scatter
about the line, that
seemed to group by
particle composition



End-member partition coefficients to
different particle phases

= f(lith) » K™ + f(CaC0O;) » K** + f(opal) K + f(POM)
+f(Fe(OH);) * K Fe(o” + f(MnO,) KM“°2

Hayes et al. 2015 Marine Chemistry

Hayes et al. 2015 Marine Chemistry:

* Assume that the overall partition coefficient (Kd) is a linear combination of
contributions from each major particle phase

* Use a multiple linear regression to derive end-member partition coefficients for
each particle phase

* Hayes et al. 2015 Marine Chem did this for 23°Th and 23'Pa on GAO3

* Lamborg et al. in press, Phil.Trans.Roy.Soc.London A did this for Hg on GA03
* Boyle et al. in prep, doing this for Pb on GA03

POM



End-member partition coefficients of Th, Pa, Hg
to different particle phases from GA0O3 NAZT

Particle phase I<d(-l-l‘])par‘ticlephase g/ I<d(Pa)par‘ticlephase Kd(Hg)par‘ticIephase
g g/g L/kg
POM 3.0E+06 6.0E+05 5.2E+06
Litho 2.3E+07 2.3E+06 6.9E+05
CaCO, 3.0E+07 9.0E+05 5.1E+06
Fe(OH); 3.3E+08 2.9E+07 4 .4E+07
MnO, 1.2E+09 2.1E+08 1.9E+08
Opal -- -= -=

Lamborg et al.
Hayes et al. 2015 in press

Note that Fe and Mn (oxyhydr)oxides have 1-2 orders of magnitude high affinity than
other particle phases

Oxyhydroxides have very high surface area (therefore lots of surface sites)

Why might Mn have higher affinity than Fe?



Surface coordination chemistry:
point of zero charge (PZC)

Ferrihydrite: Fe(lll) oxyhydroxide

E.M. Moon, C.L. Peacock / Geochimica et Cosmochimica Acta 104 (2013) 148-164
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25 °C, shown as total [H'] in mol/L. 2 g/L oxide. Symbols are data
points, line is DLM fit.
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Contribution of each individual particle phase to
the bulk partition coefficient

 The importance of a particle phase to the overall partition
coefficient is the product of its end-member partition

coefficient times the relative concentration of that particle

phase

End-m.ember Ky of relative concentration of that

particle phase particle phase
" :
p—_— K ,(TED) ,siciephase ~ L Particlephase] /| SPM |
fK d( ) particlephase ~ K (TEI)
d overall
Overall K

Hayes et al. 2015



Predicting scavenging in GP16 EPZT
using GAO3-derived end-member Kds

* Since we have particle composition in the
GP16 EPZT, we can calculate what TEl-particle
associations we might expect in GP16 given

the GAO3-derived intrinsic Kds:
* Caveats:

— K s determined on GAO3 are empirical, and may
not be portable



Predicting 239Th scavenging in GP16 EPZT
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Predicting 23'Pa scavenging in GP16 EPZT
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Predicting Hg scavenging in GP16 EPZT
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* “One of the central problems confronting
oceanographers studying marine scavenging is
the relationship between what is actually

measured and the specific processes
producing those observations.”

Honeyman et al. 1988 DSR



Assessing the extent of scavenging (2): Relating a

kinetic scavenging model to a partition coefficient
4 Step1:ad§qrption N
f

M, = »
" dissolved ~ particulate

Step 2: Removal\
of particles from

R, ;
desorpton S ) settling (1A=
- P § ~ particle residence
lp~ 1

time) p
With thorium as an example, write an equation for the change in the activities of dissolved
thorium (Aq4,) and particulate thorium (A, . .):

0Aty, ~ Production  decay adsorption desorption
6t = lThAP o xThAThdiss o RfAThdiss + Rr AThpart
dAT adsorption decay desorpuon  om settling
part __ !
Ervenie RiAm,, — MnAt,, = RAm,. — *parA,.
Now assume steady state, and relate an observed partitic()jn cct))efﬁcient (Kd) to rate parameters:
adsor

-l )
D - — - . oneyman
A, ) LG, R, + Arn + Apardd LCp) al.&1988

desorb decay sink SPM DSR



Should K, be portable between basins?

adsorb

o 8 VAR S, S VL
D - - oneyman
A’I‘hdiSs CP R, + Amp + )'parl CP et al.&1988

desorb decay  sink SPM DSR

* If at steady state, and if decay (Ay,) and sinking (A oart) @re negligible
compared to desorptlon (R), then Kg*C, is like an equmbnum
constant and might be portable

e Butif not at steady state, if sinking is large, or if other processes
important (e.g. remineralization, advection), then empirical K|
derived from one basin may not be easily portable to another

A more kinetic description of scavenging may be helpful

e See Paul Lerner’s pop-up talk on using inverse models to estimate
scavenging rate constants, and their relationship to particle
composition



Open questions

* Need to reconcile empirical descriptions of
scavenging to mechanistic (kinetic) processes

— Ongoing work by Paul Lerner and Olivier Marchal
suggest some differences—>differences can help us
understand mechanisms of scavenging

* Given importance of Fe and Mn oxyhydroxides,
need to better understand their formation
mechanisms

— EPZT: Fe oxyhydroxide formation in the OMZ was a
surprise. Others?

— Mechanisms of Mn oxidation



