Upper ocean remineralization and recycling processes, including processes in aggregates, and their impacts on dissolved trace element speciation

Kathy Barbeau

UC San Diego

The marine "microbial ferrous wheel" - 1996

rates in nmol Fe m⁻² d⁻²; standing stocks in μ mol Fe m⁻²

Kirchman N&V on Tortell et al., Nature 1996

Spinning the "ferrous wheel" – FeCycle, 2005

Ferrous wheel – current concept

fe ratio = new iron/(new + regenerated iron)

Boyd & Ellwood, Nature Geoscience 2010

Uniformity in biotic iron pool across contrasting ecosystems

Boyd & Ellwood, Nature Geoscience 2010

@AGU PUBLICATIONS

Global Biogeochemical Cycles

RESEARCH ARTICLE

10.1002/2014GB005014

Why are biotic iron pools uniform across highand low-iron pelagic ecosystems?

P. W. Boyd^{1,2}, R. F. Strzepek^{3,4}, M. J. Ellwood⁵, D. A. Hutchins⁶, S. D. Nodder⁷, B. S. Twining⁸, and S. W. Wilhelm⁹

Site	Characteristics	Cyanobacteria	Auto-flags	Diatoms	Microzoo	Mesozoo
FeCycle ^b	Subantarctic HNLC	Prokaryotic (Synecho.)	Mixed comm. (low abundances)	Low abundances, mixed comm.	Mixed comm.	Calanoid and neocalanoid copepods
FeCycle II ^c	Subtropical high iron	Prokaryotic (Synecho.)	Mixed comm. (low abundances)	Asterionellopis bloom	Mixed comm.	Mainly calanoid copepods
SOIREE HNLC ^d	Polar HNLC	Eukaryotic	Mixed comm. (low abundances)	Low abundances, mixed comm.	Mixed comm.	Mainly calanoid copepods
SOIREE high iron ^d	Polar high iron	Eukaryotic	Mixed comm. (high abundances)	Fragiliariopsis bloom	Mixed comm.	Mainly calanoid copepods
KEOPS ^e	Island wake high iron	Pro and Euk's (Iow abundances)	Mixed comm. (low abundances)	Chaetoceros bloom	Mixed comm.	Mixed community (including euphausiids)

".....quotas and iron recycling efficiencies together set biotic iron pools. Hence, site-specific differences in iron recycling efficiencies (which provide 20–50% and 90% of total iron supply in high- and low-iron waters, respectively) help offset the differences in new iron inputs between low- and high-iron sites."

Fe fertilized regions – Fe recycling 20-50%, higher *f*e

HNLC – Fe recycling 90%, low *f*e

Boyd et al. GBC 2015

Biogeosciences, 12, 4421–4445, 2015 www.biogeosciences.net/12/4421/2015/ doi:10.5194/bg-12-4421-2015 © Author(s) 2015. CC Attribution 3.0 License.

 $(\mathbf{0})$

Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2

A. R. Bowie^{1,2,3}, P. van der Merwe¹, F. Quéroué^{1,2,3}, T. Trull^{1,4}, M. Fourquez^{2,5}, F. Planchon³, G. Sarthou³, F. Chever^{3,a}, A. T. Townsend⁶, I. Obernosterer⁵, J.-B. Sallée^{7,8,9}, and S. Blain⁵

Bowie et al. BG 2015

KEOPS-2 study area

Bowie et al. BG 2015

Fe budgets for three KEOPS-2 sites

Bowie et al. BG 2015

How important is Fe recycling, really?

KEOPS-2 biogeochemical Fe budgets indicate Fe supply from recycling was relatively minor component at all sites - contrast to earlier findings from other Fe process studies in the Southern Ocean.

???

Cyanobacteria vs diatoms in the ferrous wheel – no contest?

Low surface area:volume ratio Low affinity for DFe Low cellular Fe requirements Low dissolved Fe requirements High Fe use efficiency? "non steady-state biomass" Minor contributor to biogenic Fe pool Fate – mainly export (d) Fe retained intracellularly (d) Minor part of the Ferrous Wheel Major algal contributor to export

How bacteria act to short-circuit diatom Fe export and keep the ferrous wheel spinning

Heme

Siderophores

Heme as a component of the biogenic Fe pool

Table 1	Range of	values	reported for	or biogenic iro	n and	heme b	in the	Southern	Ocean
---------	----------	--------	--------------	-----------------	-------	--------	--------	----------	-------

Region	Biogenic iron (pM)	Heme b (pM)	Size fraction	Method/ref.
SE New Zealand (46.24 S, 178.72 E) S Australia (46–60 S, 139–140 E) Scotia Sea (52–60 S, 38–45 E)	40-310 100-380	0.6-21	>0.2 μm >0.2 μm >0.7 μm	Oxalate wash ^{a 108} Oxalate wash ^{b 112} Heme b direct determination ¹⁰⁰

Hogle et al. Metallomics 2014

Genes for heme uptake widespread in marine bacteria

Hogle et al. Metallomics 2014

Algal-bacteria interactions facilitate Fe recycling via heme uptake

Hogle et al. in review

Algal-associated bacteria utilize a variety of organic iron acquisition strategies

Algal-associated *Roseobacters* have diverse metal uptake capabilities

Hogle et al., AEM 2016

Free-living SAR11 strains have much lower versatility in metal transport systems

Hogle et al., AEM 2016

Evidence for a pulse of strong ligands produced at bloom decline in deckboard grow-out

Closing thoughts

Our understanding of Fe recycling mechanisms has continued to expand over the past two decades. Need to catch up for other metals.

May need to re-examine our assumptions about Fe recycling efficiency in different regimes, or improve methods to constrain.

Diatoms may be a bigger part of the ferrous wheel than previously appreciated, due to the metal recycling capabilities of algal-associated bacteria.

The relative importance of different metal recycling pathways likely feeds back into oceanic food webs via impacts on metal speciation and bioavailability.

Acknowledgements

Thanks to: Shane Hogle Randie Bundy

Bianca Brahamsha Chris Dupont Cameron Thrash Eric Allen Jessica Blanton

CCE LTER

Funding provided by: NSF Ocean Sciences, NSF LTER

