sFDvent: Building the first global functional trait database for hydrothermal vent species

(co-authors shown in bold have already contributed to the database, while other co-authors have agreed to contribute)

Abbie Chapman¹, Diva Amon², Maria C. Baker¹, Stace Beaulieu³, P.A. Loka Bharathi⁴, Rachel E. Boschen⁵, Simone N. Brandão⁶, Chong Chen⁷, Malcolm R. Clark⁸, Ana Colaço⁹, Isabelle J. Cooper¹, Jon T. Copley¹, Erik E. Cordes¹⁰, Daphne Cuvelier⁹, Sébastien Duperron¹¹, Charles J. Fisher¹², Françoise Gaill¹³, Andrey V. Gebruk¹⁴, Klaas Gerdes¹⁵, Adrian G. Glover¹⁶, Sabine Gollner¹⁷, Breea Govenar¹⁸ Benjamin Grupe¹⁹, Ana Hilário²⁰, Tammy Horton²¹, Stéphane Hourdez²², Baban S. Ingole⁴, Terue C. Kihara¹⁵, Lisa A. Levin²³, Katrin Linse²⁴, Leigh Marsh²⁵, Marjolaine Matabos²⁶, Nélia C. Mestre²⁰, Anna Metaxas²⁷, Susan W. Mills³, Lauren S. Mullineaux³, Marie Portail²⁸, Cherisse Du Preez¹², Jian-Wen Qiu²⁹, Eva Ramirez-Llodra³⁰, Hans T. Rapp³¹, William D. K. Reid³², Ashley A. Rowden⁸, Elena Rybakova¹⁴, Jozeé Sarrazin²⁶, Samuel J. Southgate³³, Tresa Remya A. Thomas⁴, Verena Tunnicliffe⁵, Phillip J. Turner³⁴, Paul A. Tyler¹, Cindy L. Van Dover³⁴, Robert V. Vrijenhoek³⁵, Anders Warén³⁶, Hiromi Watanabe⁷, Helena Wiklund¹⁶, Moriaki Yasuhara³⁷, Craig M. Young³⁸, Amanda Bates¹

¹University of Southampton, UK; asac1g09@soton.ac.uk ²University of Hawaii at Manoa, USA ³Woods Hole Oceanographic Institution (WHOI), USA ⁴CSIR - National Institute of Oceanography, India ⁵University of Victoria, Canada ⁶ Universidade Federal do Rio Grande do Norte, Brazil ⁷Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan ⁸NIWA, New Zealand ⁹IMAR - University of the Azores, Azores ¹⁰Temple University, USA ¹¹ Pierre and Marie Curie University, France ¹²The Pennsylvania State University, USA ¹³French National Centre for Scientific Research, France ¹⁴P.P. Shirshov Institute of Oceanology, Russia ¹⁵Senckenberg Research Institute, Germany ¹⁶Natural History Museum, UK ¹⁷NIOZ Royal Netherlands Institute for Sea Research, Netherlands ¹⁸ Rhode Island College ¹⁹Fisheries and Oceans Canada, Canada ²⁰University of Aveiro, Portugal ²¹National Oceanography Centre Southampton (NOCS), UK ²²CNRS Station Biologique de Roscoff, France ²³Scripps Institution of Oceanography, USA ²⁴British Antarctic Survey, UK ²⁵NOCS, UK ²⁶Institut français de recherché pour l'exploitation de la mer (Ifremer), France ²⁷Dalhousie University, USA ²⁸Concordia University Montréal, Canada

²⁹Hong Kong Baptist University, Hong Kong

³⁰Norwegian Institute for Water Research, Norway
³¹University of Bergen, Norway
³²University of Newcastle, UK
³³ Independent Researcher, UK
³⁴Duke University, USA
³⁵Monterey Bay Aquarium Research Institute, USA
³⁶Swedish Museum of Natural History, Sweden
³⁷ The University of Hong Kong, China
³⁸University of Oregon, USA

Hydrothermal vent communities differ dramatically in their taxonomic composition on a global scale, forming distinct biogeographic provinces. A functional trait approach offers a common currency to compare vent communities across these provinces (using species traits like body size, nutritional source, and others, alongside taxonomic and genetic information). The sFDvent working group aimed to build a freely available, global functional trait database for hydrothermal vent ecosystems, using data collected since hydrothermal vents were first discovered forty years ago. Traits were selected that characterized a species' performance and contribution to ecosystem function and best matched those in well-established trait databases (e.g., BIOTIC, The Coral Trait Database, and Marine Species Traits), to ensure cross-ecosystem comparability and consistency. After being scored by a global pool of experts, the traits were then reduced (and modalities refined) to those that could be scored for the majority of species with a high degree of certainty, to ensure data quality. These cleaned and quality assessed trait scores comprise the 17 trait sFDvent database to be presented at CBE6, currently encompassing species from 5 ridges, 4 back-arc basins and one cold seep. This database is an open resource that will expand through time with contributions from the global community of deep-sea scientists, many of whom are in attendance at CBE6. The goal of sFDvent is to improve our understanding of the functional biodiversity and biogeography of chemosynthetic ecosystems, to enable us to: quantitatively assess spatiotemporal functional diversity patterns; identify environmental and evolutionary drivers and conservation hotspots; and develop indicators of resilience.